SOLUCIONES DE LOS EJERCICIOS DE MATEMÁTICAS

TEMA 2

EXPRESIONES ALGEBRAICAS. MONOMIOS. OPERACIONES CON MONOMIOS.

TEMA 3

POLINOMIOS. SUMA, PRODUCTO Y COCIENTE DE UN POLINOMIO. TEOREMA DEL RESTO. REGLA DE RUFFINI. IDENTIDADES NOTABLES. FACTORIZACIÓN DE UN POLINOMIO. TRIÁNGULO DE TARTAGLIA.

"La matemática es la reina de las ciencias y la aritmética es la reina de las matemáticas. Ella a menudo se digna a prestar un servicio a la astronomía y a otras ciencias naturales, pero en todas las relaciones, tiene derecho a la primera fila."

Carl Friedrich Gauss (1777-1855)

Expresa en lenguaje algebraico cada uno de los siguientes enunciados:

a) El 30% de un número.

0,3x

b) El área de un rectángulo de base 3 cm y altura desconocida.

3x

c) El perímetro de un rectángulo de base 3 cm y altura desconocida.

6 + 2x

d) El doble del resultado de sumarle a un número entero su siguiente.

$$2[x + (x + 1)] = 2(2x + 1) = 4x + 2$$

e) El triple del resultado de sumar un número con su inverso.

$$3\left(x+\frac{1}{x}\right)=3x+\frac{3}{x}$$

f) El doble de la edad que tendré dentro de cinco años.

$$2(x+5) = 2x+10$$

g) El quíntuplo del área de un cuadrado de lado x.

 $5x^2$

h) El área de un triángulo del que se sabe que su base es la mitad de su altura.

$$\frac{\mathbf{x} \cdot \frac{\mathbf{x}}{2}}{2} = \frac{\mathbf{x}^2}{4}$$

i) La mitad del resultado de sumarle 3 a un número.

$$\frac{x+3}{2}$$

j) La tercera parte del área de un rectángulo en el que la base mide el doble que la altura.

$$\frac{2\mathbf{x} \cdot \mathbf{x}}{3} = \frac{2\mathbf{x}^2}{3}$$

Expresa en lenguaje algebraico cada uno de los siguientes enunciados:

a) La media de un número y su cuádruplo.

$$\frac{x+4x}{2} = \frac{5x}{2}$$

b) La cuarta parte de un número entero más el cuadrado de su siguiente.

$$\frac{x}{4} + (x+1)^2$$

c) El perímetro de un triángulo isósceles del que sabemos que su lado desigual mide 4 cm menos que cada uno de los dos lados iguales.

$$2x + (x - 4) = 3x - 4$$

d) La diagonal de un cuadrado de lado x.

$$\sqrt{x^2 + x^2} = \sqrt{2x^2} = x\sqrt{2}$$

e) El doble de la edad que tenía hace 7 años.

$$2(x-7) = 2x-14$$

f) La suma de un número con el doble de otro.

$$x + 2y$$

g) El precio de una camisa rebajado en un 20%.

0.8x

h) El área de un círculo de radio x.

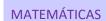
 πx^2

i) La suma de tres números enteros consecutivos.

$$x + (x + 1) + (x + 2) = 3x + 3$$

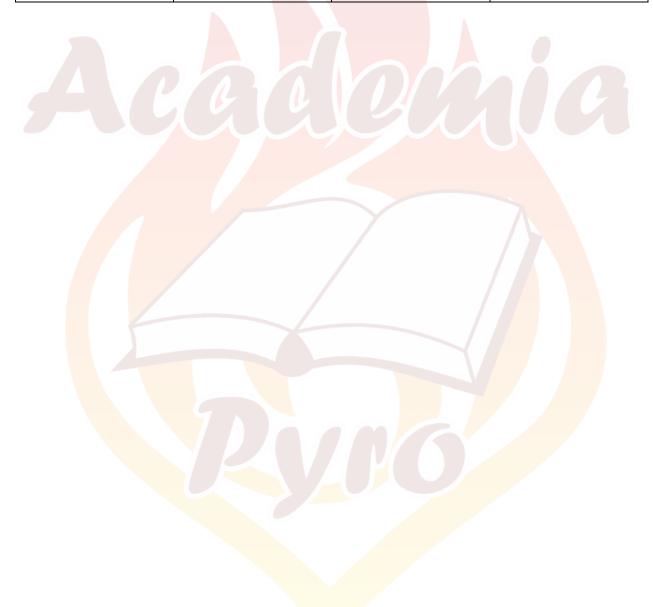
j) El cuadrado de la suma de dos números enteros consecutivos.

$$[x + (x + 1)^2] = (2x + 1)^2$$



Completa esta tabla:

POLINOMIO	GRADO	N° DE TÉRMINOS	VARIABLE/S
$3x^4 + 2x - 1$	4	3	x
$2x^3y^2 + 3$	5	2	х, у
$\frac{x^3}{2} + 5x$	3	2	х
$\frac{3}{4}x^2 + 2x - 7$	2	3	x



Indica cuáles de las siguientes igualdades son identidades y cuáles son ecuaciones. Razona tu respuesta:

a)
$$2x + 8x = 10x$$

Es una identidad, pues es cierta para cualquier valor de x.

b)
$$2x + 8x = 10$$

Es una ecuación, solo cierta para x=1.

c)
$$3(x-1) = 12$$

Es una ecuación, solo cierta para x=5.

d)
$$3(x-1) = 3x - 3$$

Es una identidad, es cierta para cualquier valor de x.

e)
$$2(x+1) = 2x + 2$$

Es una identidad, es cierta para cualquier valor de x.

f)
$$(x + 1) = 8$$

Es una ecuación, solo cierta para x=7.

g)
$$2x + 2$$

Es un polinomio (no una igualdad).

h)
$$x^4 - 3x^2 + 5x - 1 = 0$$

Es una ecuación, pues es una igualdad algebraica que no es cierta para cualquier valor de x.

Reduce las siguientes expresiones:

a)
$$\frac{3+x}{2} + \frac{1}{3}(x-1) - \frac{1}{6}(2x-3)$$

$$\frac{3x+10}{6} = \frac{3x}{6} + \frac{10}{6} = \frac{x}{2} + \frac{5}{3}$$

b)
$$(3x^2 - 5x + 1)(2x + 2)$$

$$6x^3 - 4x^2 - 8x + 2$$

c)
$$(3x^2 - 2x + 1)(-2x + 3)$$

$$-6x^3 + 13x^2 - 8x + 3$$

d)
$$\frac{3}{4}(x-2) + \frac{1}{2}(\frac{x}{2} - \frac{x}{3} + \frac{1}{2})$$

$$\frac{10x}{12} - \frac{15}{12} = \frac{5x}{6} - \frac{5}{4}$$

Simplifica las siguientes fracciones algebraicas:

- a) $\frac{3x^2-6x}{9x^2+15}$
 - $\frac{x^2-2x}{3x^2+5}$
- b) $\frac{a^3-5a^2}{7a^3+4a^2}$
- $d) \frac{2a^2b^2+3ab}{a^3b-ab}$

 - $\frac{2ab+3}{(a+1)(a-1)}$

Desarrolla las siguientes potencias:

a)
$$(2x-5y)^2$$

 $4x^2 - 20xy + 25y^2$

b)
$$(3x + \frac{y}{3})^2$$

 $9x^2 + 2xy + \frac{y^2}{9}$

c)
$$\left(5x^2 - \frac{5}{x}\right)^2$$

25 $x^4 - 50x + \frac{25}{x^2}$

d)
$$(3a-b)^2$$

 $9a^2 - 6ab + b^2$

e)
$$(a^2 + b^2)^2$$

 $a^4 + 2a^2b^2 + b^4$

f)
$$\left(\frac{3}{5}y - \frac{2}{y}\right)^2$$
 $\frac{9}{25y^2} - \frac{12}{5y^2} + \frac{4}{y^2}$

g)
$$(x-3) \cdot (x+3)$$

 $x^2 - 9$

h)
$$(y-5) \cdot (y+5)$$

 y^2-25

i)
$$(3-5i) \cdot (3+5i)$$

9+25 = 34

(aquí hemos multiplicado por el conjugado y vemos como queda un resultado sin la i de los complejos)

j)
$$(5i + 2) \cdot (5i - 5)$$

-35 - 15i

(aquí vemos que si no le cambiamos el signo a la parte imaginaria la multiplicación no nos elimina la i de los complejos que es lo que buscamos al multiplicar por el conjugado)

Desarrolla y reduce las siguientes expresiones:

a)
$$(x+5)^2 - (x-5)^2$$

20x

b)
$$(2x+3)(2x-3)-2(2x^2-1)$$

-7

c)
$$(x+6)(x-6)-(x-6)^2$$

$$12x - 72$$

d)
$$(3x+1)^2 - 3x(x+2)$$

$$6x^2 + 1$$

e)
$$(2x - 5)^2$$

$$4x^2 - 20x + 25$$

f)
$$x(3x-2)-(3x+2)(3x-2)$$

$$-6x^2 - 2x + 4$$

g)
$$(5x-1)^2 - (5x+1)(5x-1)$$

$$-10x + 2$$

h)
$$(x+7)^2 - x(x+14)$$

49

Expresa como cuadrado de un binomio o como producto de una suma por una diferencia:

a) $4x^2 - \frac{1}{36}$

$$\left(2x-\frac{1}{6}\right)\left(2x+\frac{1}{6}\right)$$

b) $36x^2 + 36x + 9$

$$(6x + 3)^2$$

c) $9x^2 - 42x + 49$

$$(3x-7)^2$$

d) $\frac{9x^2}{4} - 25$

$$\left(\frac{3}{2}x-5\right)^2\left(\frac{3}{2}x+5\right)^2$$

e) $a^4 + 6a^2 + 9$

$$(a^2 + 3)^2$$

f) $9x^2 - 6x + 1$

$$(3x-1)^2$$

g) $b^2 - 10b + 25$

$$(b-5)^2$$

h) $4y^2 + 12y + 9$

$$(2y+3)^2$$

i) $a^4 - 2a^2 + 1$

$$(a^2 - 1)^2$$

j) $y^4 + 6y^2 + 9$

$$(y^2 + 3)^2$$

Realiza las siguientes operaciones con polinomios:

a)
$$(-4x^3 + 2x) - (-3x^2)$$

 $-4x^3 + 3x^2 + 2x$

b)
$$(2x^4 + x) - (-3x^2)$$

 $2x^4 + 4x + 4$

c)
$$(3x^2 - x) - (2x^3 + x^2 - x)$$

 $-2x^3 + 2x^2$

d)
$$x^2 \cdot (-5x^4 - 3x^2 + 1) \cdot 2x^3$$

-10 $x^9 - 6x^7 + 2x^5 = 2x^5(-5x^4 - 3x^2 + 1)$

e)
$$(2x^2 - 3) \cdot (-3x^2 - 5x + 4) \cdot (-x)$$

 $6x^5 + 10x^4 - 17x^3 - 15x^2 + 12x$

Divide los siguientes polinomios:

a)
$$2x^4 - x^2 - x + 7$$
 entre $x^2 + 2x + 4$

$$\begin{aligned} & \text{Cociente} = 2x^2 - 4x - 1 \\ & \text{Resto} = 17x + 11 \end{aligned}$$

b)
$$-10x^3 - 2x^2 + 3x + 4$$
 entre $5x^3 - x^2 - x + 3$

$$\begin{aligned} & \text{Cociente} = -2 \\ & \text{Resto} = -4x^2 + x + 10 \end{aligned}$$

c)
$$4x^5 - 6x^3 + 6x^2 - 3x - 7$$
 entre $2x^3 + x + 3$

Cociente =
$$-2x^2 + 2$$

Resto = $12x^2 - 5x - 13$

d)
$$-8x^5 - 2x^4 + 10x^3 + 2x^2 + 3x + 5$$
 entre $4x^3 + x^2 + x - 1$

Cociente =
$$-2x^2 + 3$$

Resto = $-3x^2 + 8$

e)
$$-6x^5 + x^2 + 1$$
 entre $x^3 + 1$

Cociente =
$$-6x^2$$

Resto = $7x^2 + 1$

Resuelve las siguientes divisiones de polinomios:

a)
$$x^3 - 2x^2 + 1$$
 $x - 1$ $x^2 - x - 1$

b)
$$2x^2 + 4x + 2 2x + 1$$

 $x + \frac{3}{2}$

c)
$$3x^4 + 6x^2 + 3 \boxed{3x^2 + 1}$$

 $x^2 + \frac{5}{3}$

d)
$$3x^3 - 6x - 2 \left[2x - 3 \right]$$

$$\frac{3x^2}{2} + \frac{9x}{4} + \frac{3}{8}$$

MATEMÁTICAS

Para cada uno de los siguientes polinomios señala, en primer lugar, qué números enteros son candidatos a ser raíces suyas y, después, determina cuáles lo son:

a)
$$x^3 - x^2 + 2x - 2$$

Candidatos a raíz: 1, -1, 2, -2

Raíces: 1

b)
$$x^4 + 4x^3 + 4x^2 + 4x + 3$$

Candidatos a raíz: -1, -3

Raíces: -1, -3

c)
$$2x^3 + x^2 - 18x - 9$$

Candidatos a raíz: 1, -1, 3, -3, 9, -9

Raíces: 3, -3

d)
$$x^4 + 2x^3 + 3x^2 + 6x$$

Candidatos a raíz: -1, -2, -3, -6

Raíces: 0, -2

Determina las raíces de cada uno de los siguientes polinomios:

- a) x + 5
 - $\mathbf{x} = -\mathbf{5}$
- b) -x + 3
 - $\mathbf{x} = \mathbf{3}$
- c) 7x 5
 - $x=\frac{5}{7}$
- d) -3x 11
 - $x = -\frac{11}{3}$
- e) –7x
 - $\mathbf{x} = 0$
- f) $x^2 8x$
 - $\mathbf{x_1} = \mathbf{0}$
 - $x_2 = 8$
- g) $4x^2 x 3$
 - $\mathbf{x_1} = \mathbf{1}$
 - $x_2 = -\frac{3}{4}$
- h) $x^3 4x$
 - $\mathbf{x_1} = \mathbf{0}$
 - $x_2 = -2$
 - $x_3 = 2$
- i) $x^3 + 25x$
 - $\mathbf{x_1} = \mathbf{0}$
 - $x_2 = 5i$
 - $x_3 = -5i$

Resuelve por Ruffini:

a)
$$3x^5 - 4x^4 - 6x^2 - 7x$$
: $(x + 2)$

$$C(x) = 3x^4 - 10x^3 + 20x^2 - 46x + 85$$

$$R(x) = -170$$

b)
$$\left(-\frac{1}{2}x^3 + 2x^2 - \frac{3}{2}\right)$$
: $(x+3)$

-1/2 2 0 -3/2

-3 3/2 -21/2 63/2

-1/2 7/2 -21/2 60/2

$$C(x) = -\frac{1}{2}x^2 + \frac{7}{2}x - \frac{21}{2}$$

$$R(x) = 30$$

c)
$$(x^6 - 3)$$
: $(x - 2)$

	1	0	0	0	0 0	-3
2		2	4	8	16 32	64
	1	2	4	8	16 32	61

$$C(x) = x^5 + 2x^4 + 4x^3 + 8x^2 + 16x + 32$$

$$\mathbf{R}(\mathbf{x}) = \mathbf{61}$$

Factoriza los siguientes polinomios:

a)
$$x^4 - 2x^2 - 1$$

$$(x-1)^2 \cdot (x+1)^2$$

b)
$$x^4 + 3x^3 - 5x^2 - 3x + 4$$

$$(x-1)^2\cdot(x+1)\cdot(x+4)$$

c)
$$x^4 + 2x^3 - 12x^2 + 14x - 5$$

$$(x-1)^3 \cdot (x+5)$$

d)
$$x^5 + 6x^4 + 5x^3 - 24x^2 - 36x$$

$$x\cdot(x-2)\cdot(x+2)\cdot(x+3)^2$$

Resuelve:

a)
$$x^3 - 3x + 2 = 0$$

$$x^3 - 3x + 2 = (x - 1)^2(x + 2)$$

Soluciones:
$$x_1 = 1, x_2 = 1, x_3 = -2$$

b)
$$x^4 + x^3 - 19x^2 - 49x - 30 = 0$$

$$x^4 + x^3 - 19x^2 - 49x - 30 = (x - 5) \cdot (x + 1) \cdot (x + 2) \cdot (x + 3)$$

Soluciones:
$$x_1 = 5, x_2 = -1, x_3 = -2, x_4 = -3$$

c)
$$x^6 + 2x^5 - 3x^4 - 4x^3 + 4x^2 = 0$$

$$x^6 + 2x^5 - 3x^4 - 4x^3 + 4x^2 = x^2 \cdot (x - 1)^2 \cdot (x + 2)^2$$

Soluciones:
$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = -2, x_6 = -2$$

a) Determina el valor m para que la división $(2x^3 - 4x^2 + x + m)$: (x + 2) sea exacta.

$$m = 34$$

b) Determina el valor m para que la división $(x^3 + mx + 3)$: (x - 2) sea exacta.

$$m=-\frac{11}{2}$$

c) Determina el valor m para que la división $(x^3 + mx^2 + 2x + 3)$: (x - 1) tenga por residuo -7.

$$m = -13$$

d) Determina m sabiendo que x=3 es una raíz del polinomio $P(x)=x^4-3x^3+mx+1$.

$$m=-\frac{1}{3}$$

e) Calcula el valor de a para que x - 1 sea divisor de $2x^3 - x^2 + 3x + a$:

$$a = -4$$

f) Determina el valor de t para que la división $(3x^3 + 5x^2 + t \cdot x - 5)$: (x - 2) tenga el mismo resto que la división $(x^3 - 4x^2 + 4x + 9)$: (x + 4):

$$t = -87$$

a) Divide el polinomio $5x^4 - 14 + 5x + x^3$ entre $x^2 - 3$ indicando el cociente y el resto. Aplica la regla de la división para comprobar que los cálculos del apartado anterior están bien realizados.

Cociente =
$$5x^2 + x + 15$$

Resto = $8x + 31$

Regla de la división: (Cociente · Divisor) + Resto = Dividendo

$$(5x^2 + x + 15) \cdot (x - 5) = 5x^4 + x^3 - 3x - 45$$

 $(5x^4 + x^3 - 3x - 45) + (8x + 31) = 5x^4 + x^3 + 5x - 14$

b) Halla el valor de m para que la división
$$(x^3 + mx^2 + 2x - 10)$$
: $(x - 5)$ sea exacta.

b.1) Aplicando el teorema del resto.

Evalúo el polinomio $p(x) = x^3 + mx^2 + 2x - 10$ sabiendo que debe dar 0 para que se cumpla el teorema del resto:

$$p(5) = 125 + 25m + 10 - 10 = 0 \rightarrow m = -5$$

b.2) Aplicando la técnica de Ruffini.

	1	m	2	-10
		5	5m+25	25m+135
5	$1 = 0 \rightarrow m = -$	m+5	5m+27	25m+125

Con ambos métodos da el mismo valor de m.

Desarrolla:

a)
$$(a + b)^6$$

$$a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$$

b)
$$(2x-3y)^4$$

$$16x^4-96x^3y+216x^2y^2-216xy^3+81y^4$$

c)
$$(5-z)^5$$

$$-z^5 + 25z^4 - 250z^3 + 1250z^2 - 3125z + 3125$$

