

Oposición Consorcio de Extinción de incendios y Salvamento de la Región de Murcia (Matemáticas)

EJERCICIOS PROGRESIONES GEOMÉTRICAS

1. Determina el término general de las siguientes progresiones geométricas:

a)
$$a_n = 3, 9, 27, 81, ...$$

c)
$$c_n = 5$$
, -15, 45, -135, ...

b)
$$b_0 = 80, 40, 20, 10, 5, ...$$

d)
$$d_n = \frac{1}{9}, \frac{1}{3}, 1, ...$$

2. Indica si las siguientes progresiones son geométricas:

a)
$$a_n = 12, 9, 6, 3, ...$$

c)
$$c_n = 1, 4, 9, 16, ...$$

b)
$$b_n = 6, 18, 54, ...$$

d)
$$d_n = \frac{5}{3}, \frac{5}{12}, \frac{5}{48}, \dots$$

- 3. Calcula el término 24 de la progresión geométrica 4, 12, 36, ...
- 4. En una progresión geométrica el sexto término es 27 y el tercero 1. Halla la razón.
- **5.** En una progresión geométrica a_1 = 8 y a_3 = 2. Calcula a_6 y su término general.
- 6. En una progresión geométrica el primer término vale 6 y la razón 2. Determina el lugar que ocupa el término de valor 6 144.
- ~ 7. Calcula la suma de los seis primeros términos de una progresión geométrica en la que a_1 = 4 y r = 3.
 - **8.** ¿Cuánto vale la suma de los cinco primeros términos de una progresión geométrica en la que $a_5 = 324$ y r = 3?
- **9.** ¿Cuántos términos se han tomado en una progresión geométrica de primer término 7 si el último considerado vale 448 y la suma de ellos 889?
 - **10.** En una progresión geométrica $S_6 = 1$ 456 y r = 3. Determina a_1 y a_4 .

$$\alpha_n = \alpha_1 \cdot y^{n-1}$$

$$S_h = \frac{\alpha_h \cdot V - \alpha_l}{V - l}$$

SOLUCIONES

1) Determina el término general

En una **P.G.**: $a_n = a_1 r^{n-1}$.

a)
$$3, 9, 27, 81, \ldots \Rightarrow a_1 = 3, \ r = 3.$$

$$\boxed{a_n = 3 \cdot 3^{n-1} = 3^n}.$$

$$a_n=3\cdot 3^{n-1}=3^n$$

b)
$$80, 40, 20, 10, 5, \ldots \Rightarrow a_1 = 80, \ r = \frac{1}{2}.$$

$$b_n = 80 \left(\frac{1}{2}\right)^{n-1}.$$

$$b_n = 80 \left(\frac{1}{2}\right)^{n-1}$$

c)
$$5, -15, 45, -135, \ldots \Rightarrow a_1 = 5, \ r = -3.$$
 $c_n = 5(-3)^{n-1}$.

$$c_n = 5(-3)^{n-1}$$

d)
$$\frac{1}{9}$$
, $\frac{1}{3}$, $1, \ldots \Rightarrow a_1 = \frac{1}{9}$, $r = 3$. $d_n = \frac{1}{9} 3^{n-1} = 3^{n-3}$.

$$d_n = rac{1}{9} \, 3^{\, n-1} = 3^{n-3}$$
 . $lacksquare$

2) ¿Son geométricas?

a) 12, 9, 6, 3, ... Cocientes: $9/12 \neq 6/9 \Rightarrow No.$

b) $6, 18, 54, \ldots$ Cociente constante $= 3 \Rightarrow Si$ (P.G., r = 3).

c) $1, 4, 9, 16, \dots$ (cuadrados) \Rightarrow cociente no constante \Rightarrow No.

d) $\frac{5}{3}$, $\frac{5}{12}$, $\frac{5}{48}$, . . . Cociente (5/12)/(5/3) = 1/4 y $(5/48)/(5/12) = 1/4 \Rightarrow$ Sí (P.G., $r = \frac{1}{4}$).

3) $4, 12, 36, \ldots$ Hallar a_{24}

$$a_n=4\cdot 3^{\,n-1}\Rightarrow \boxed{a_{24}=4\cdot 3^{23}}$$
 .

4) En una P.G. $a_6=27$ y $a_3=1$. Razón r

$$\frac{a_6}{a_3} = r^3 = \frac{27}{1} \Rightarrow \boxed{r=3}.$$

5) En una P.G. $a_1=8$ y $a_3=2$. Calcula a_5 y el término general

$$a_3=a_1r^2\Rightarrow 2=8r^2\Rightarrow r^2=rac{1}{4}\Rightarrow r=\pmrac{1}{2}.$$

• Si
$$r=rac{1}{2}$$
: $a_n=8\left(rac{1}{2}
ight)^{n-1}$.

• Si
$$r = -\frac{1}{2}$$
: $a_n = 8\left(-\frac{1}{2}\right)^{n-1}$.

En ambos casos $a_5=8\cdot(\frac{1}{2})^4=\boxed{\frac{1}{2}}$.

6) P.G. con $a_1=6,\ r=2$. ¿Qué lugar ocupa 6144?

$$6 \cdot 2^{\,n-1} = 6144 \Rightarrow 2^{\,n-1} = 1024 = 2^{10} \Rightarrow \boxed{n = 11}$$

7) Suma de los seis primeros términos con $a_1=4,\;r=3$

$$S_6 = rac{a_1(r^6-1)}{r-1} = rac{4(3^6-1)}{2} = 4 \cdot rac{728}{2} = \boxed{1456}.$$

8) Suma de los cinco primeros términos con $a_5=324,\;r=3$

$$a_1 = \frac{a_5}{r^4} = \frac{324}{3^4} = 4.$$
 $S_5 = \frac{4(3^5 - 1)}{3 - 1} = \frac{4(243 - 1)}{2} = \boxed{484}.$

9) En una P.G. $a_1=7$, último $=448\,\mathrm{y}\,S=889$. ¿Cuántos términos?

Del último: $7r^{n-1}=448\Rightarrow r^{n-1}=64=2^6\Rightarrow r=2,\;n=7.$ Comprueba la suma: $S_7=\dfrac{7(2^7-1)}{2-1}=7\cdot 127=889.$ $\boxed{n=7}.$

10) En una P.G. $S_6=1456$ y r=3. Halla a_1 y a_4

$$a_1 = rac{S_6(r-1)}{r^6-1} = rac{1456 \cdot 2}{720-1} = \boxed{4}, \qquad a_4 = a_1 r^3 = 4 \cdot 27 = \boxed{108}.$$