

Oposición Consorcio de Extinción de incendios y Salvamento de la Región de Murcia (Matemáticas)

TEMAS 1 EJERCICIOS

NÚMEROS COMPLEJOS

1. Dados los siguientes números complejos:

$$z_1 = 4 - 5i$$
 $z_2 = 2 + 3i$

$$z_1 = 4 - 5i$$
 $z_2 = 2 + 3i$ $z_3 = -3 + 5i$ $z_4 = 6 + 2i$

$$z_5 = (7.8)$$
 $z_6 = (-4, -9)$ $z_7 = (-12, 2)$ $z_8 = (4, 5)$

$$z_{\rm s} = (4, 5)$$

efectúa las siguientes operaciones algebraicas:

1)
$$z_1 + z_2$$

5)
$$z_1 \div z_2$$

2)
$$z_4 - z_3$$

6)
$$z_3 \div z_4$$

3)
$$z_8 + z_7$$

7)
$$\frac{z_1}{z_2 \cdot z_1}$$

4)
$$z \cdot z$$

$$8)\frac{z_2 \cdot z_3}{z_4}$$

2. Calcula las partes reales e imaginarias de:

a)
$$\frac{3-2i}{2+i}$$

$$h) \frac{1}{(1-i)^5}$$

$$m) \frac{4+i}{1-3i}$$

b)
$$\frac{3-2i}{2-3i}$$

i)
$$\frac{5-5i}{3+4i}$$

n)
$$\frac{1+3i}{2+i}$$

c)
$$(1-i)(1+i)i$$

j)
$$(5-i)(1+5i)$$

$$\tilde{n}$$
) $\frac{(2-i)(1-2i)^2}{3+i}$

d)
$$(1+i)^4$$

k)
$$(2+5i)^3$$

o)
$$(3-2i)^3$$

e)
$$\frac{(1-i)^5}{(1+i)^5}$$

$$1)\ \frac{1}{\left(1-i\right)^{6}}$$

p)
$$\frac{(1+i)(1-i)^4}{(1+2i)^3}$$

f)
$$(1-i)(2+3i)(3+i)(2-2i)$$

a)
$$i^{3459}$$

g)
$$\frac{1}{2+i\sqrt{3}} - \frac{2}{1+i\sqrt{3}} + \frac{5/2-i\sqrt{3}}{2+i\sqrt{3}}$$

Oposición Consorcio de Extinción de incendios y Salvamento de la Región de Murcia (Matemáticas)

- 3. Sean z y w dos números complejos cualesquiera. Comprueba la igualdad $z \cdot w = z \cdot w$
- **4.** Dados los números complejos $z_1 = 2i$, $z_2 = -i$ $y z_3 = 4i$, calcula:
 - a) $z_3 \cdot z_2$
- b) z_1
- c) $\frac{Z_{1}.Z_{2}}{Z_{3}}$

- d) $z_1 \cdot z_2$
- e) $\frac{(z)^3}{z_2 \cdot (z)^2}$
- 5. Sea $z = \frac{k+i}{2+i}$. Calcula el valor de k para que z = 2-i.
- **6.** Sea z = (3-6i)(4-ki). Calcula el valor de k para que z sea un número imaginario puro.
- 7. Sea z = (3-6i)(4-ki). Calcula el valor de k para que z sea un número real.
- 8. Calcula m y n para que se cumpla la igualdad: $\frac{4m-2i}{3+ni} = 6-2i$.
- 9. La suma de dos números complejos es 3 + i y la parte real de uno de ellos es 2. Determina dichos números sabiendo que su cociente es imaginario puro,
- 10. Sea $z = \frac{k+i}{2+i}$. Calcula el valor de k para que $|z| = \sqrt{2}$.
- 11. La suma de las partes reales de dos complejos conjugados es 6 y el módulo de uno de ellos es 5. Calcula ambos números.
- **12.** Expresa en forma polar:
 - a) 4-3i

b) 5+12 *i*

c) -3+3i

d) -2 - 4i

Oposición Consorcio de Extinción de incendios y Salvamento de la Región de Murcia (Matemáticas)

- Escribe en forma polar el resultado del cociente: $\frac{i^5 i^{-8}}{i \cdot b}$ 13.
- 14. Expresa en forma trigonométrica los complejos:

a)
$$-3 + 3\sqrt{3}i$$

b)
$$1-i$$

c)
$$6 - 5i$$

$$d) - 9 - 8i$$

15. Expresa en forma binómica los siguientes complejos:

b)
$$2_{\pi/6}$$

c)
$$3_{3\pi/4}$$

16. Determina las formas polar y trigonométrica de los números:

a)
$$-2\sqrt{3} - 2i$$

b)
$$3 - 3\sqrt{3}i$$

c)
$$-4+4i$$

d)
$$7 + 7i$$

- 17. Hallar los números complejos tales que $\bar{z} = z^{-1}$.
- 18. Escribe en forma binómica y en forma de par el cociente de los números 6,20°
- *19.* Realiza las operaciones en forma polar y después pasa a forma binómica:

a)
$$3_{45^{\circ}} \cdot 2_{15^{\circ}}$$

e)
$$1_{33^{\circ}} \cdot 2_{16^{\circ}} \cdot 3_{41^{\circ}}$$

a)
$$3_{45^{\circ}} \cdot 2_{15^{\circ}}$$
 b) $9_{37^{\circ}} \cdot 3_{97^{\circ}}$ e) $1_{33^{\circ}} \cdot 2_{16^{\circ}} \cdot 3_{41^{\circ}}$ i) $5_{23^{\circ}} \cdot 3_{97^{\circ}}$ f) $(2_{51^{\circ}})^{4} : (4_{72^{\circ}})^{2}$ j) $2_{106^{\circ}} \cdot \frac{1}{61^{\circ}}$

g)
$$(2_{25^{\circ}})^3 \cdot 3_{15^{\circ}}$$

g)
$$(2_{25^n})^3 \cdot 3_{15^n}$$
 k) $(1_{45^n})^{18} : (2_{90^n})^3$

d)
$$\left(\sqrt{2}-i\right)^6$$

h)
$$(3-3i)^{3}$$

h)
$$(3-3i)^{8}$$
 l) $(-2+2i)^{10}$

20. Calcula el resultado de las siguientes operaciones, y escribelos en todas las formas que conoces:

a)
$$\frac{(1+i)(1-i)^5}{2-2\sqrt{3}i}$$

b)
$$\frac{2}{1-\sqrt{3}i} + \frac{2}{1+\sqrt{5}i} + \frac{2}{1+i}$$

SOLUCIONES

Ejercicio 1

Datos (tal como aparecen):

$$z_1 = 4 - 5i$$
, $z_2 = 2 + 3i$, $z_3 = -3 + 5i$, $z_4 = 6 + 2i$, $z_7 = -12 + 2i$, $z_8 = 4 + 5i$.

Operaciones:

1.
$$z_1 + z_2$$

 $(4-5i) + (2+3i) = 6-2i$.

2.
$$z_4 - z_3$$

 $(6+2i) - (-3+5i) = 9-3i$.

3.
$$z_8 + z_7$$

 $(4+5i) + (-12+2i) = -8+7i$.

4.
$$z_1 \cdot z_3$$

$$(4-5i)(-3+5i) = 4(-3) + 4(5i) - 5i(-3) - 5i(5i) = -12 + 20i + 15i - 25i^2 = 13 + 35i.$$

5.
$$z_1 \div z_2$$

$$\frac{4-5i}{2+3i} \cdot \frac{2-3i}{2-3i} = \frac{(4-5i)(2-3i)}{2^2+3^2} = \frac{8-12i-10i+15i^2}{13} = \frac{-7-22i}{13}.$$

6.
$$z_3 \div z_4$$

$$\frac{-3+5i}{6+2i} \cdot \frac{6-2i}{6-2i} = \frac{(-3+5i)(6-2i)}{6^2+2^2} = \frac{-18+36i+10}{40} = -\frac{1}{5} + \frac{9}{10}i.$$

7.
$$\frac{\overline{z_1}}{z_2 \cdot \overline{z_1}}$$

$$\overline{z_1} = 4 + 5i.$$

$$z_2 \overline{z_1} = (2 + 3i)(4 + 5i) = -7 + 22i.$$

$$\frac{4+5i}{-7+22i} \cdot \frac{-7-22i}{-7-22i} = \frac{82-123i}{533} = \frac{82}{533} - \frac{123}{533}i.$$

8.
$$\frac{z_2 \cdot \overline{z_3}}{z_4}$$

$$\overline{z_3} = -3 - 5i.$$

$$z_2 \overline{z_3} = (2 + 3i)(-3 - 5i) = 9 - 19i.$$

$$\frac{9-19i}{6+2i} \cdot \frac{6-2i}{6-2i} = \frac{16-132i}{40} = \frac{2}{5} - \frac{33}{10}i.$$

Ejercicio 2 — "Calcula las partes reales e imaginarias de ..."

Los siguientes apartados se leen bien; los demás los dejo en blanco (—).

a)
$$\dfrac{3-2i}{2+i}$$

$$\frac{3-2i}{2+i} \cdot \frac{2-i}{2-i} = \frac{6-7i-2}{5} = \boxed{\frac{4}{5} - \frac{7}{5}i}$$

b)
$$\frac{3-2i}{2-3i} = \frac{(3-2i)(2+3i)}{13} = \boxed{\frac{12}{13} + \frac{5}{13}i}$$

Ejercicio 2 — "Calcula las partes reales e imaginarias de ..."

Los siguientes apartados se leen bien; los demás los dejo en blanco (—).

a)
$$\frac{3-2i}{2+i}$$

$$\frac{3-2i}{2+i} \cdot \frac{2-i}{2-i} = \frac{6-7i-2}{5} = \boxed{\frac{4}{5} - \frac{7}{5}i}.$$

b)
$$\frac{3-2i}{2-3i}=\frac{(3-2i)(2+3i)}{13}=\boxed{\frac{12}{13}+\frac{5}{13}i}.$$

c)
$$(1-i)(1+i)i = (1-i^2)i = 2i$$
.

d)
$$(1+i)^4 = [(1+i)^2]^2 = (2i)^2 = -4$$
.

e)
$$\frac{(1-i)^5}{(1+i)^5} = \left(\frac{1-i}{1+i}\right)^5 = (-i)^5 = \boxed{-i}$$
.

f)
$$(1-i)(2+3i)(3+i)(2-2i)$$

$$(1-i)(2+3i) = 5+i$$

$$(3+i)(2-2i) = 8-4i$$

$$(5+i)(8-4i) = 44-12i.$$

$$44 - 12i$$

g) — (no legible con seguridad)

h)
$$rac{1}{(1-i)^2} = rac{1}{-2i} = oxed{rac{i}{2}}.$$

i)
$$\frac{5-5i}{3+4i} = \frac{(5-5i)(3-4i)}{25} = -\frac{1}{5} - \frac{7}{5}i$$
.

j)
$$(5-i)(1+5i) = 10+24i$$
.

k)
$$(2+5i)^3 = -142-65i$$
.

I)
$$rac{1}{(1-i)^6} = rac{1}{(-2i)^3} = rac{1}{8i} = -rac{i}{8}.$$

$$\text{m) } \frac{4+i}{1-3i} = \frac{(4+i)(1+3i)}{10} = \boxed{\frac{1}{10} + \frac{13}{10}i}.$$

n) — (no legible con seguridad)

o)
$$(3-2i)^3 = -9-46i$$
.

p)
$$\frac{(1+i)(1-i)^4}{(1+2i)^3} = \frac{-4-4i}{-11+2i} = \boxed{\frac{52}{125} + \frac{36}{125}i}$$

q) — (el exponente de i no se distingue con claridad)

3.

Enunciado (ya nítido): "Sean z y w dos números complejos cualesquiera. Comprueba la igualdad

$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

u

(Es la propiedad estándar del conjugado respecto del producto).

Demostración paso a paso

Sea z=a+bi y w=c+di, con $a,b,c,d\in\mathbb{R}$.

1. Producto $z \cdot w$:

$$z w = (a + bi)(c + di) = (ac - bd) + (ad + bc)i.$$

2. Conjugado de ese producto:

$$\overline{zw} = \overline{(ac - bd) + (ad + bc)i} = (ac - bd) - (ad + bc)i.$$

3. Conjugados por separado:

$$\overline{z} = a - bi, \qquad \overline{w} = c - di.$$

4. Producto de los conjugados:

$$\overline{z}\,\overline{w} = (a-bi)(c-di) = (ac-bd) - (ad+bc)i.$$

5. Comparación:

Los resultados en 2) y 4) coinciden exactamente, por lo tanto:

$$\overline{z}\,\overline{w} = \overline{z}\,\overline{w}$$
.

4.

Datos: $z_1 = 2i, \ z_2 = -i, \ z_3 = 4i.$

Te resuelvo lo que se ve claro en la imagen (a–e). En el **apartado c**) parece no haber conjugados; el resultado coincide también si hubiera barras de conjugado (lo indico).

a) $z_3 \cdot z_2$

$$z_3z_2 = (4i)(-i) = -4i^2 = 4.$$

Resultado: 4

b)
$$\frac{z_1}{(z_2)^2}$$

$$(z_2)^2 = (-i)^2 = -1 \implies \frac{z_1}{(z_2)^2} = \frac{2i}{-1} = -2i.$$

Resultado: -2i

c)
$$rac{z_1 \cdot z_2}{z_3}$$
 (si hubiera conjugados en z_1, z_2 , el valor es el mismo)

$$z_1z_2=(2i)(-i)=-2i^2=2, \qquad rac{2}{4i}=rac{1}{2i}=-rac{i}{2}.$$

Resultado: $-\frac{i}{2}$

d)
$$z_1:z_2=rac{z_1}{z_2}$$

$$\frac{2i}{-i} = -2.$$

Resultado: -2

e)
$$\frac{(z_1)^3}{z_2(z_3)^2}$$

$$(z_1)^3=(2i)^3=8i^3=-8i, \qquad (z_3)^2=(4i)^2=16i^2=-16.$$
 $z_2(z_3)^2=(-i)(-16)=16i.$ $rac{-8i}{16i}=-rac{1}{2}.$

Resultado: $-\frac{1}{2}$

5.

Sea
$$z=rac{k+i}{2+i}.$$
 Calcula k para que $z=2-i.$

$$\frac{k+i}{2+i} = 2-i \implies k+i = (2-i)(2+i) = 4-i^2 = 5$$

$$\Rightarrow k = 4$$

Resultado: k=4 .

6.

Sea z=(3-6i)(4-ki). Calcula k para que z sea imaginario puro (parte real =0).

$$(3-6i)(4-ki) = 12-6k + (-3k-24)i$$

Parte real
$$=0\Rightarrow 12-6k=0\Rightarrow \boxed{k=2}$$

7.

Mismo z=(3-6i)(4-ki). Calcula k para que z sea real (parte imaginaria =0).

$$Im(z) = -3k - 24 = 0 \Rightarrow k = -8.$$

Resultado: k=-8 y entonces z=60 (real).

8.

Halla m y n para que

$$\frac{4m-2i}{3+ni}=6-2i.$$

Igualamos numeradores tras multiplicar:

$$4m - 2i = (6 - 2i)(3 + ni) = 18 + 2n + (6n - 6)i.$$

Comparando partes:

$$\begin{cases} 4m = 18 + 2n \\ -2 = 6n - 6 \end{cases} \Rightarrow n = \frac{2}{3}, \quad 4m = 18 + \frac{4}{3} = \frac{58}{3} \Rightarrow m = \frac{29}{6}.$$

Resultado: $m=rac{29}{6},\;n=rac{2}{3}$.

9.

La suma de dos complejos es 3+i y la parte real de uno es 2. Determínalos sabiendo que su cociente es imaginario puro.

Sea $z_1 = 2 + bi$. Entonces $z_2 = (3 + i) - z_1 = 1 + (1 - b)i$.

Que $\frac{z_1}{z_2}$ sea imaginario puro \Rightarrow su parte real =0.

$$\frac{2+bi}{1+(1-b)i} \text{ tiene parte real } \frac{2+b(1-b)}{1+(1-b)^2} = 0$$

$$\Rightarrow 2 + b(1 - b) = 0 \Rightarrow b^2 - b - 2 = 0 \Rightarrow b = 2 \text{ o } b = -1.$$

Dos soluciones:

- b=2: $z_1=2+2i$, $z_2=1-i$.
- b = -1: $z_1 = 2 i$, $z_2 = 1 + 2i$.

Resultado: $(2+2i,\ 1-i)$ o $(2-i,\ 1+2i)$

10.

Sea $z=rac{k+i}{2+i}.$ Calcula k para que $|z|=\sqrt{2}.$

$$|z| = rac{|k+i|}{|2+i|} = rac{\sqrt{k^2+1}}{\sqrt{5}} = \sqrt{2} \Rightarrow k^2+1 = 10 \Rightarrow k = \pm 3.$$

Resultado: $k=3\ {
m o}\ k=-3$.

11.

La suma de las partes reales de dos complejos conjugados es 6 y el módulo de uno es 5. Hallarlos.

Sea
$$z = a + bi$$
 y $\overline{z} = a - bi$.

Suma de reales: $a+a=6 \Rightarrow a=3$.

$$|z| = \sqrt{a^2 + b^2} = 5 \Rightarrow 9 + b^2 = 25 \Rightarrow b = \pm 4.$$

Resultado: $3+4i \ y \ 3-4i$

12. Expresa en forma polar

(Escribo
$$z=r(\cos heta+i\sin heta)=r\cos heta$$
. Doy grados y radianes.)

a)
$$4 - 3i$$

$$r = \sqrt{4^2 + (-3)^2} = 5.$$

$$heta=\arctan\left(\frac{-3}{4}\right) \approx -36,87^\circ = -0,6435 \ {
m rad}$$
 (o $323,13^\circ$). $\boxed{5\ {
m cis}(-0,6435)}$.

$$r = \sqrt{25 + 144} = 13.$$

$$\theta = \arctan\left(\frac{12}{5}\right) \approx 67{,}38^{\circ} = 1{,}1760 \text{ rad.}$$

c)
$$-3 + 3i$$

$$r = \sqrt{18} = 3\sqrt{2}.$$

Cuadrante II
$$\Rightarrow heta = 135^\circ = rac{3\pi}{4}.$$

$$3\sqrt{2} \operatorname{cis}\left(\frac{3\pi}{4}\right)$$

d)
$$-2 - 4i$$

$$r = \sqrt{20} = 2\sqrt{5}.$$

Cuadrante III
$$\Rightarrow \theta = \pi + \arctan 2 \approx 243,\!435^\circ = 4,\!2487 \ \mathrm{rad}$$
 (o $-116,\!565^\circ$).

$$2\sqrt{5} \operatorname{cis}(4,2487)$$

13. Escribe en forma polar el resultado del cociente

$$\frac{i^5 - i^7}{i\sqrt{2}}$$

$$i^5=i,\; i^7=i^3=-i \Rightarrow i^5-i^7=i-(-i)=2i.$$

$$\frac{2i}{i\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

Número real y positivo: $r=\sqrt{2},\; \theta=0.$

Resultado:
$$\sqrt{2} (\cos 0 + i \sin 0)$$

14. Expresa en forma trigonométrica los complejos

a)
$$-3+3\sqrt{3}i$$

$$r = \sqrt{(-3)^2 + (3\sqrt{3})^2} = 6, \quad \theta = 120^\circ = \frac{2\pi}{3}.$$

$$6\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

b)
$$1 - i$$

$$r=\sqrt{2},\;\theta=-45^\circ=-\tfrac{\pi}{4}.$$

$$\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$$

c)
$$6 - 5i$$

$$r=\sqrt{61},\; heta=-\arctanrac{5}{6}pprox -0,6947\; \mathrm{rad}.$$

$$\sqrt{61} (\cos \theta + i \sin \theta), \ \theta \approx -0.6947$$

d)
$$-9 - 8i$$

$$r=\sqrt{145},\; heta=\pi+rctanrac{8}{9}pprox 3,8682\; \mathrm{rad}.$$

$$\sqrt{145} (\cos \theta + i \sin \theta), \ \theta \approx 3,8682$$

15. Expresa en forma binómica

a)
$$7_{120}$$
:

$$\cos 120^{\circ} = -\frac{1}{2}, \; \sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

$$-\frac{7}{2} + \frac{7\sqrt{3}}{2}i$$

b)
$$2_{\pi/6}$$
:

$$\sqrt{3} + 1i$$

c)
$$3_{3\pi/4}$$
:

$$-\frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$$

d)
$$5_{135^{\circ}}$$
 (la que me confirmaste):

$$-\frac{5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i$$

16. Determina las formas polar y trigonométrica

a)
$$-2\sqrt{3} - 2i$$

$$r = \sqrt{12 + 4} = 4, \ \theta = 210^{\circ} = \frac{7\pi}{6}.$$

$$4 \operatorname{cis} \frac{7\pi}{6}$$
.

b)
$$3 - 3\sqrt{3}i$$

$$r=6, \; \theta=-60^\circ=-\frac{\pi}{3}.$$

$$\boxed{6 \operatorname{cis}\!\left(-\frac{\pi}{3}\right)}.$$

$$r=4\sqrt{2},\; heta=135^\circ=rac{3\pi}{4}.$$

$$4\sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$

d)
$$7 + 7i$$

$$r = 7\sqrt{2}, \ \theta = 45^{\circ} = \frac{\pi}{4}.$$

$$\boxed{7\sqrt{2} \operatorname{cis} \frac{\pi}{4}}.$$

$$7\sqrt{2} \operatorname{cis} \frac{\pi}{4}$$

17. Hallar los complejos tales que $\overline{z}=z^{-1}$.

Sea
$$z=re^{i\theta}.$$
 Entonces $\overline{z}=re^{-i\theta}$ y $z^{-1}=r^{-1}e^{-i\theta}.$

$${\sf Igualdad} \Rightarrow r = r^{-1} \Rightarrow r^2 = 1 \Rightarrow r = 1.$$

Todos los complejos de módulo 1:

$$z=e^{i heta}=\cos heta+i\sin heta,\; heta\in\mathbb{R}$$
 .

18. Escribe en forma binómica y en forma de par el cociente de los números $6_{120^{\circ}}$...

— (falta el segundo número; lo dejo en blanco).

19. Realiza las operaciones en forma polar y luego pasa a binómica

Los únicos apartados que se leen con claridad en tu captura:

d)
$$(\sqrt{2}-i)^6$$

Primero al cuadrado: $(\sqrt{2}-i)^2=1-2\sqrt{2}i$.

Cuarta potencia: $(1 - 2\sqrt{2}i)^2 = -7 - 4\sqrt{2}i$.

Sexta: $(-7 - 4\sqrt{2}i)(1 - 2\sqrt{2}i) = -23 + 10\sqrt{2}i$.

$$-23+10\sqrt{2}\,i$$

h)
$$(3-3i)^8$$

$$3 - 3i = 3\sqrt{2} \operatorname{cis}(-\frac{\pi}{4}).$$

$$(3\sqrt{2})^8 = 104\,976, \ -8\cdot\frac{\pi}{4} = -2\pi \Rightarrow \text{ángulo } 0.$$

 $104\,976$

h)
$$(3-3i)^8$$

$$3 - 3i = 3\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right).$$

$$(3\sqrt{2})^8 = 104\,976, \ -8\cdot\frac{\pi}{4} = -2\pi \Rightarrow \text{ángulo } 0.$$

104 976

k)
$$\left(1_{45^\circ}\right)^{18}$$
 : $\left(2_{90^\circ}\right)^3$

$$(1_{45^{\circ}})^{18} = 1_{810^{\circ}} = 1_{90^{\circ}} = i.$$

$$(2_{90^{\circ}})^3 = 8_{270^{\circ}}$$
.

Cociente: $\frac{1}{8} \frac{1}{90^{\circ} - 270^{\circ}} = \frac{1}{8} \frac{1}{-180^{\circ}} = -\frac{1}{8}$.

I)
$$(-2+2i)^{10}$$

$$-2 + 2i = 2\sqrt{2} \operatorname{cis} \frac{3\pi}{4}$$

$$\begin{array}{l} -2+2i=2\sqrt{2}\ \mathrm{cis}\ \frac{3\pi}{4}.\\ (2\sqrt{2})^{10}=2^{15}=32\,768,\ 10\cdot\frac{3\pi}{4}=\frac{15\pi}{2}=3\pi/2\ (\mathrm{m\'od}\ 2\pi). \end{array}$$

$$-32\,768\,i$$

El resto de apartados del 19 no se leen bien → "—".

20. Calcula y escribe en todas las formas

a)
$$\frac{(1+i)(1-i)^5}{2-2\sqrt{3}i}$$

$$(1-i)^2 = -2i \Rightarrow (1-i)^4 = (-2i)^2 = -4 \Rightarrow (1-i)^5 = -4(1-i) = -4 + 4i.$$

Numerador: (1+i)(-4+4i) = -8.

$$\frac{-8}{2 - 2\sqrt{3}i} = -\frac{4}{1 - \sqrt{3}i} = -(1 + \sqrt{3}i).$$

- Binómica: $-1 \sqrt{3}i$
- Módulo: 2.
- Ángulo: $240^{\circ} = \frac{4\pi}{3}$.
- Polar/trig.: $2\left(\cos{4\pi\over 3}+i\sin{4\pi\over 3}\right)$

b)
$$\frac{2}{1-\sqrt{3}i} + \frac{2}{1+\sqrt{3}i} + \frac{2}{1+i}$$

$$\frac{2}{1-\sqrt{3}i} = \frac{1}{2} + \frac{\sqrt{3}}{2}i, \qquad \frac{2}{1+\sqrt{3}i} = \frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

$$\frac{2}{1+i} = 1-i.$$

Total:

$$1 + (1-i) = \boxed{2-i}.$$

- $\hbox{ Polar: } r=\sqrt{5}, \; \theta=-\arctan\tfrac{1}{2}\approx -0.4636 \; \mathrm{rad}.$ $\hbox{ Trig.: } \boxed{\sqrt{5}\left(\cos\theta+i\sin\theta\right)}.$